SECCIONES CÓNICAS
Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola,hipérbola y circunferencia.ELIPSE
Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.

PARÁBOLA
En matemáticas, una parábola es la sección cónica resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamada directriz, y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.

HIPÉRBOLA
Una hipérbola es el lugar geométrico de los puntos de un plano tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva.

CIRCUNFERENCIA
Una circunferencia es el lugar geométrico de los puntos de un plano que equidistan de otro punto fijo y coplanario llamado centro en una cantidad constante llamada radio.

Aquí podrán ver como graficar las cónicas en el programa de geogebra
Resolviendo cónicas
Resolviendo una hipérbola
Resolviendo una elipse
Aquí podrán ver métodos de como solucionar ejercicios de geometría analítica
Visita estas paginas y podrás encontrar material de apoyo para darle solución a problemas de geometría analítica especialmente a las cónicas
No hay comentarios.:
Publicar un comentario